Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679836

RESUMO

In this study, we design a highly efficient plasma source using a magnetic mirror trap with two opposing permanent magnets for a miniature high-efficiency ion pump. First, we simulated the distribution of the magnetic field line formed by the proposed magnetic mirror configuration. By optimizing the distance between two opposing permanent magnets and size of these magnets, a magnetic mirror ratio value of 27 could be obtained, which is an electron confinement efficiency of over 90%. We also conducted an experiment on a high-efficiency discharge plasma source for a miniature ion pump using an optimized magnetic circuit. As a result, we revealed that the proposed magnetic circuit has a pronounced effect on plasma generation, particularly in the high-vacuum region.


Assuntos
Magnetismo , Imãs , Campos Magnéticos , Vácuo , Elétrons
2.
Sci Rep ; 12(1): 13328, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922439

RESUMO

The use of metal deposition has been limited to a limited number of applicable samples due to the increased temperature caused by accelerated electron impact on the substrate surface. The surfaces of various biological samples have a nanoscale structure with specific properties, which have been simulated in numerous studies. However, no examples of nano/microscale reproductions of biological surface features have used moulds. In this study, a mould that imitates the surface shape of a cellular-level biological material was fabricated, for the first time, and the shape was successfully reproduced using the mould. Al thin films were deposited on bovine sperm using magnetron sputtering without thermal denaturation with a cathode operating at a biological temperature. It is difficult to deposit films used as metal coatings on pre-treated biological materials at temperatures below 40 °C during evaporation. The Al thin film was peeled off and used as a mould to reproduce the shape of the sperm with high accuracy using a polymer. The results of this study represent a major innovation in reproducible biomimetic moulding technology, demonstrating biological temperature sputtering. We expect our non-destructive metal deposition and metal nano-moulding methods for biological samples to be the basis for the effective utilization of various biological structures.


Assuntos
Metais , Sêmen , Animais , Bovinos , Masculino , Reprodução , Propriedades de Superfície , Temperatura
3.
Micromachines (Basel) ; 13(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35630157

RESUMO

Fluid control on a paper channel is necessary for analysis with multiple reagents, such as enzyme-linked immunosorbent assay (ELISA) in microfluidic paper-based analytical devices (µPADs). In this study, a thermo-responsive valve was fabricated by polymerizing N-isopropylacrylamide on a PVDF porous membrane by plasma-induced graft polymerization. The polymerized membrane was observed by scanning electron microscopy (SEM), and it was confirmed that more pores were closed at temperatures below 32 °C and more pores were opened at temperatures above 32 °C. Valve permeability tests confirmed that the proposed polymerized membrane was impermeable to water and proteins at temperatures below 32 °C and permeable to water at temperatures above 32 °C. The valve could also be reversibly and repeatedly opened and closed by changing the temperature near 32 °C. These results suggest that plasma-induced graft polymerization may be used to produce thermo-responsive valves that can be opened and closed without subsequent loss of performance. These results indicate that the thermo-responsive valve fabricated by plasma-induced graft polymerization could potentially be applied to ELISA with µPADs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...